x

Meta-Analysis

 2024 May 31;14(1):12545. doi: 10.1038/s41598-024-62726-4.

Efficacy and safety of stem cell transplantation for multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials

Asmaa Ahmed Nawar 1Aml Mostafa Farid 2Rim Wally 3Engy K Tharwat 4Ahmed Sameh 5Yomna Elkaramany 5Moamen Mostafa Asla 2Walaa A Kamel 6

Affiliations

  • 1Faculty of Medicine, Zagazig University, Zagazig, Egypt. Asmaa.ahmed.nawar@gmail.com.
  • 2Faculty of Medicine, Zagazig University, Zagazig, Egypt.
  • 3Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
  • 4Bioinformatics Group, Centre for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt.
  • 5Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
  • 6Neurology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.

Abstract

Multiple sclerosis (MS) is a common autoimmune neurological disease affecting patients' motor, sensory, and visual performance. Stem Cell Transplantation (SCT) is a medical intervention where a patient is infused with healthy stem cells with the purpose of resetting their immune system. SCT shows remyelinating and immunomodulatory functions in MS patients, representing a potential therapeutic option. We conducted this systematic review and meta-analysis that included randomized control trials (RCTs) of SCT in MS patients to investigate its clinical efficacy and safety, excluding observational and non-English studies. After systematically searching PubMed, Web of Science, Scopus, and Cochrane Library until January 7, 2024, nine RCTs, including 422 patients, were eligible. We assessed the risk of bias (ROB) in these RCTs using Cochrane ROB Tool 1. Data were synthesized using Review Manager version 5.4 and OpenMeta Analyst software. We also conducted subgroup and sensitivity analyses. SCT significantly improved patients expanded disability status scale after 2 months (N = 39, MD = - 0.57, 95% CI [- 1.08, - 0.06], p = 0.03). SCT also reduced brain lesion volume (N = 136, MD = - 7.05, 95% CI [- 10.69, - 3.4], p = 0.0002). The effect on EDSS at 6 and 12 months, timed 25-foot walk (T25-FW), and brain lesions number was nonsignificant. Significant adverse events (AEs) included local reactions at MSCs infusion site (N = 25, RR = 2.55, 95% CI [1.08, 6.03], p = 0.034) and hematological disorders in patients received immunosuppression and autologous hematopoietic SCT (AHSCT) (N = 16, RR = 2.33, 95% CI [1.23, 4.39], p = 0.009). SCT can improve the disability of MS patients and reduce their brain lesion volume. The transplantation was generally safe and tolerated, with no mortality or significant serious AEs, except for infusion site reactions after mesenchymal SCT and hematological AEs after AHSCT. However, generalizing our results is limited by the sparse number of RCTs conducted on AHSCT. Our protocol was registered on PROSPERO with a registration number: CRD42022324141.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1

Figure 1 

PRISMA Flow chart of the…

 

Figure 2

Figure 2 

Risk of bias assessment: (…

 

Figure 3

Figure 3 

Forest plot of EDSS change…

 

Figure 4

Figure 4 

Forest plot of T25-FW change…

 

Figure 5

Figure 5 

Forest plot of radiological outcomes…

Similar articles

See all similar articles

References

    1. Browne P, et al. Atlas of multiple sclerosis 2013: A growing global problem with widespread inequity. Neurology. 2014;83:1022–1024. doi: 10.1212/WNL.0000000000000768. - DOI PMC PubMed
    1. Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015;5:e00362. doi: 10.1002/brb3.362. - DOI PMC PubMed
    1. Lublin FD, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 2014;83:278–286. doi: 10.1212/WNL.0000000000000560. - DOI PMC PubMed
    1. Wingerchuk DM, Carter JL. Multiple sclerosis: Current and emerging disease-modifying therapies and treatment strategies. Mayo Clin. Proc. 2014;89:225–240. doi: 10.1016/j.mayocp.2013.11.002. - DOI PubMed
    1. Piehl F. Current and emerging disease-modulatory therapies and treatment targets for multiple sclerosis. J. Intern. Med. 2021;289:771–791. doi: 10.1111/joim.13215. - DOI PMC PubMed

References

    1. Browne P, et al. Atlas of multiple sclerosis 2013: A growing global problem with widespread inequity. Neurology. 2014;83:1022–1024. doi: 10.1212/WNL.0000000000000768. - DOI PMC PubMed
    1. Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015;5:e00362. doi: 10.1002/brb3.362. - DOI PMC PubMed
    1. Lublin FD, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 2014;83:278–286. doi: 10.1212/WNL.0000000000000560. - DOI PMC PubMed
    1. Wingerchuk DM, Carter JL. Multiple sclerosis: Current and emerging disease-modifying therapies and treatment strategies. Mayo Clin. Proc. 2014;89:225–240. doi: 10.1016/j.mayocp.2013.11.002. - DOI PubMed
    1. Piehl F. Current and emerging disease-modulatory therapies and treatment targets for multiple sclerosis. J. Intern. Med. 2021;289:771–791. doi: 10.1111/joim.13215. - DOI PMC PubMed
    1. Gavriilaki M, Sakellari I, Gavriilaki E, Kimiskidis VK, Anagnostopoulos A. Autologous hematopoietic cell transplantation in multiple sclerosis: Changing paradigms in the era of novel agents. Stem. Cells Int. 2019;2019:1–9. doi: 10.1155/2019/5840286. - DOI PMC PubMed
    1. Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic advances in multiple sclerosis. Front. Neurol. 2022;13:824926. doi: 10.3389/fneur.2022.824926. - DOI PMC PubMed
    1. Gholamzad M, et al. A comprehensive review on the treatment approaches of multiple sclerosis: Currently and in the future. Inflammation Res. 2019;68:25–38. doi: 10.1007/s00011-018-1185-0. - DOI PubMed
    1. Liu Z, Liao Q, Wen H, Zhang Y. Disease modifying therapies in relapsing-remitting multiple sclerosis: A systematic review and network meta-analysis. Autoimmun. Rev. 2021;20:102826. doi: 10.1016/j.autrev.2021.102826. - DOI PubMed
    1. Sharrack B, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: Updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Acc. Bone Marrow Transplant. 2020;55:283–306. doi: 10.1038/s41409-019-0684-0. - DOI PMC PubMed
    1. Zeng L, et al. Efficacy and safety of mesenchymal stem cell transplantation in the treatment of autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, and ankylosing spondylitis): A systematic review and meta-analysis of randomized controlled trial. Stem Cells Int. 2022;2022:1–20. doi: 10.1155/2022/8513812. - DOI PMC PubMed
    1. Fassas A, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: First results of a pilot study. Bone Marrow Transplant. 1997;20:631–638. doi: 10.1038/sj.bmt.1700944. - DOI PubMed
    1. Snowden JA, et al. Haematopoietic SCT in severe autoimmune diseases: Updated guidelines of the European group for blood and marrow transplantation. Bone Marrow Transplant. 2012;47:770–790. doi: 10.1038/bmt.2011.185. - DOI PMC PubMed
    1. Muraro PA, et al. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol. 2017;13:391–405. doi: 10.1038/nrneurol.2017.81. - DOI PubMed
    1. Karussis D, Kassis I. The potential use of stem cells in multiple sclerosis: An overview of the preclinical experience. Clin. Neurol. Neurosurg. 2008;110:889–896. doi: 10.1016/j.clineuro.2008.02.008. - DOI PubMed
    1. Muraro PA, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 2005;201:805–816. doi: 10.1084/jem.20041679. - DOI PMC PubMed
    1. Markov A, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res. Ther. 2021;12:192. doi: 10.1186/s13287-021-02265-1. - DOI PMC PubMed
    1. Rahim F, Arjmand B. Stem cell clinical trials for multiple sclerosis: The past, present and future. Neurol. Regen. 2017 doi: 10.1007/978-3-319-33720-3_9. - DOI
    1. Oliveira AG, Gonçalves M, Ferreira H, Neves N. Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2020;38:101860. doi: 10.1016/j.msard.2019.101860. - DOI PubMed
    1. Genc B, Bozan HR, Genc S, Genc K. Stem cell therapy for multiple sclerosis. Tissue Eng. Regen. Med. 2018 doi: 10.1007/5584_2018_247. - DOI
    1. Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J. Neuroimmunol. 2019;328:20–34. doi: 10.1016/j.jneuroim.2018.11.015. - DOI PubMed
    1. Page MJ, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. - DOI PMC PubMed
    1. Higgins JPT, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Online) 2011;343:d5928–d5928. - PMC PubMed
    1. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629. - DOI PMC PubMed
    1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) Neurology. 1983;33:1444–1452. doi: 10.1212/WNL.33.11.1444. - DOI PubMed
    1. Motl RW, et al. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Multiple Sclerosis. 2017;23:704–710. doi: 10.1177/1352458517690823. - DOI PMC PubMed
    1. Feys P, et al. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Multiple Sclerosis. 2017;23:711–720. doi: 10.1177/1352458517690824. - DOI PMC PubMed
    1. Tombaugh TN. A comprehensive review of the paced auditory serial addition test (PASAT) Archiv. Clin. Neuropsychol. 2006;21:53–76. doi: 10.1016/j.acn.2005.07.006. - DOI PubMed
    1. Higgins JPT, et al. Cochrane handbook for systematic reviews of interventions. Hoboken: Wiley; 2019.
    1. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014;14:135. doi: 10.1186/1471-2288-14-135. - DOI PMC PubMed
    1. Uccelli A, et al. Safety, tolerability, and activity of mesenchymal stem cells versus placebo in multiple sclerosis (MESEMS): a phase 2, randomised, double-blind crossover trial. Lancet Neurol. 2021;20:917–929. doi: 10.1016/S1474-4422(21)00301-X. - DOI PubMed
    1. Petrou P, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020;143:3574–3588. doi: 10.1093/brain/awaa333. - DOI PubMed
    1. Lublin FD, et al. Human placenta-derived cells(pda-001) for the treatment of adults with multiple sclerosis: Arandomized, placebo-controlled, multiple-dose study. Mult. Scler. Relat. Disord. 2014;3:696–704. doi: 10.1016/j.msard.2014.08.002. - DOI PubMed
    1. Llufriu S, et al. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One. 2014;9:1–15. doi: 10.1371/journal.pone.0113936. - DOI PMC PubMed
    1. Li J-F, et al. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant. 2014;23:113–122. doi: 10.3727/096368914X685005. - DOI PubMed
    1. Fernández O, et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One. 2018;13:1–14. doi: 10.1371/journal.pone.0195891. - DOI PMC PubMed
    1. Burt RK, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: A randomized clinical trial. JAMA J. Am. Med. Ass. 2019;321:165–174. doi: 10.1001/jama.2018.18743. - DOI PMC PubMed
    1. Mancardi GL, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurology. 2015;84:981–988. doi: 10.1212/WNL.0000000000001329. - DOI PubMed
    1. Nabavi SM, et al. Intravenous transplantation of bone marrow-derived mesenchymal stromal cells in patients with multiple sclerosis, a phase I/IIa, double blind, randomized controlled study. Mult. Scler. Relat .Disord. 2023;78:104895. doi: 10.1016/j.msard.2023.104895. - DOI PubMed
    1. Freedman MS, et al. Treatment optimization in multiple sclerosis: canadian ms working group recommendations. Can. J. Neurol. Sci. 2020;47:437–455. doi: 10.1017/cjn.2020.66. - DOI PubMed
    1. Rush CA, Maclean HJ, Freedman MS. Aggressive multiple sclerosis: Proposed definition and treatment algorithm. Nat. Rev. Neurol. 2015;11:379–389. doi: 10.1038/nrneurol.2015.85. - DOI PubMed
    1. Rush CA, Atkins HL, Freedman MS. Autologous hematopoietic stem cell transplantation in the treatment of multiple sclerosis. Cold Spring Harb. Perspect. Med. 2019;9:a029082. doi: 10.1101/cshperspect.a029082. - DOI PMC PubMed
    1. Yanwu Y, Meiling G, Yunxia Z, Qiukui H, Birong D. Mesenchymal stem cells in experimental autoimmune encephalomyelitis model of multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2020;44:102200. doi: 10.1016/j.msard.2020.102200. - DOI PubMed
    1. Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T. Systematic literature review and validity evaluation of the expanded disability status scale (EDSS) and the multiple sclerosis functional composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014;14:58. doi: 10.1186/1471-2377-14-58. - DOI PMC PubMed
    1. Kalincik T, et al. Defining reliable disability outcomes in multiple sclerosis. Brain. 2015;138:3287–3298. doi: 10.1093/brain/awv258. - DOI PubMed
    1. Ge F, Lin H, Li Z, Chang T. Efficacy and safety of autologous hematopoietic stem-cell transplantation in multiple sclerosis: A systematic review and meta-analysis. Neurol. Sci. 2019;40:479–487. doi: 10.1007/s10072-018-3670-1. - DOI PubMed
    1. Casanova B, et al. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: Comparison with secondary progressive multiple sclerosis. Neurol. Sci. 2017;38:1213–1221. doi: 10.1007/s10072-017-2933-6. - DOI PMC PubMed
    1. Genovese AV, et al. Atrophied brain T2 lesion volume at MRI is associated with disability progression and conversion to secondary progressive multiple sclerosis. Radiology. 2019;293:424–433. doi: 10.1148/radiol.2019190306. - DOI PMC PubMed
    1. Kearney H, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Multiple Sclerosis. 2014;20:72–80. doi: 10.1177/1352458513492245. - DOI PMC PubMed
    1. Solaro C, et al. Clinical correlates of 9-hole peg test in a large population of people with multiple sclerosis. Mult. Scler. Relat. Disord. 2019;30:1–8. doi: 10.1016/j.msard.2019.01.043. - DOI PubMed
    1. Castelo-Branco A, et al. Infections in patients with multiple sclerosis: A national cohort study in Sweden. Mult. Scler. Relat. Disord. 2020;45:102420. doi: 10.1016/j.msard.2020.102420. - DOI PubMed
    1. Ahmed Al-Anazi, K., K. Al-Anazi, W. & M. Al-Jasser, A. The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications. Update on Mesenchymal and Induced Pluripotent Stem Cells (2020). 10.5772/intechopen.91475.
    1. Zhou Y, et al. Autologous mesenchymal stem cell transplantation in multiple sclerosis: A meta-analysis. Stem. Cells Int. 2019;2019:1–11. doi: 10.1155/2019/8536785. - DOI PMC PubMed
    1. Greco R, et al. Allogeneic HSCT for autoimmune diseases: A retrospective study from the EBMT ADWP, IEWP, and PDWP working parties. Front. Immunol. 2019;10:5170. doi: 10.3389/fimmu.2019.01570. - DOI PMC PubMed
    1. Nabizadeh F, et al. Autologous hematopoietic stem-cell transplantation in multiple sclerosis: A systematic review and meta-analysis. Neurol. Ther. 2022;11:1553–1569. doi: 10.1007/s40120-022-00389-x. - DOI PMC PubMed
    1. Sormani MP, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurology. 2017;88:2115–2122. doi: 10.1212/WNL.0000000000003987. - DOI PubMed
    1. Alexander T, Arnold R, Hiepe F, Radbruch A. Resetting the immune system with immunoablation and autologous haematopoietic stem cell transplantation in autoimmune diseases. Clin. Exp. Rheumatol. 2016;34:53–57. - PubMed

Publication types